Перевод в системы – Системы счисления — Перевод чисел и калькулятор

Содержание

Перевод чисел в различные системы счисления с решением | Онлайн калькулятор

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ . или ,. Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку «Получить запись».

Исходное число

записано в
23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Хочу получить запись числа в
23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Получить запись


=

Выполнено переводов: 994587

Также может быть интересно: Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число:5921
Позиция:3210

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·103+9·102+2·101+1·100. Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:3210-1-2-3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·103+2·102+3·101+4·100+5·10-1+6·10-2+7·10-3.

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 10011.11012 = 1·24+0·23+0·22+1·21+1·20+1·2-1+1·2-2+0·2-3+1·2-4 = 16+2+1+0.5+0.25+0.0625 = 19.812510
Ответ: 10011.11012 = 19.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·162+8·161+15·160+2·16-1+13·16-2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·82+2·81+1·80 = 256+16+1 = 273 = 273, результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 — целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 — вторая цифра результата), 0.5·2 = 1.0 (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

programforyou.ru

Перевод чисел из одной системы счисления в другую онлайн

 

 Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

число6372
позиция3210

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·103+3·102+7·101+2·100.

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

число1287.923
позиция3210 -1-2-3

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·103 +2·102 +8·101+7·100+9·10-1+2·10-2+3·10-3.

В общем случае формулу можно представить в следующем виде:

Цn·snn-1·sn-1+…+Ц1·s10·s0-1·s-1-2·s-2+…+Д-k·s-k

(1)

где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.

В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
102816
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F

 

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1·26+0·25+1·24+1·23+1·22 +0·21+1·20+0·2-1+0·2-2+1·2-3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B — на 11, C— на 12, F — на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4. Переведем число 159 из десятичной СС в двоичную СС:

1592      
158792     
178392    
 138192   
  11892  
   1842 
    1422
     021
      0 

Рис. 1

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:

15910=100111112.

Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.

6158  
608768 
77298
 481
  1 

Рис. 2

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:

61510=11478.

Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

1967316  
19664122916 
912167616
 13644
  12 

Рис. 3

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.

Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.

  0.214
 x2
0 0.428
 x2
0 0.856
 x2
1 0.712
 x2
1 0.424
 x2
0 0.848
 x2
1 0.696
 x2
1 0.392

Рис. 4

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.

Следовательно можно записать:

0.21410=0.00110112.

Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.

  0.125
 x2
0 0.25
 x2
0 0.5
 x2
1 0.0

Рис. 5

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.12510=0.0012.

Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

  0.214
 x16
3 0.424
 x16
6 0.784
 x16
12 0.544
 x16
8 0.704
 x16
11 0.264
 x16
4 0.224

Рис. 6

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.21410=0.36C8B416.

Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

  0.512
 x8
4 0.096
 x8
0 0.768
 x8
6 0.144
 x8
1 0.152
 x8
1 0.216
 x8
1 0.728

Рис. 7

Получили:

0.51210=0.4061118.

Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.12510=10011111.0012.

Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:

19673.21410=4CD9.36C8B416.

matworld.ru

Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0000
1111
21022
311103
4100114
51011210
61102011
71112112
810002213
9100110014
10101010120
11101110221
12110011022
13110111123
14111011224
15111112030

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

00
11
22
33
44
55
66
77
88
99
10
11
1210
1311
1412
1513

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

00
11
102
113
1004
1015
1106
1117

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

00
11
102
113
1004
1015
1106
1117
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:

Звоните нам:
8 (800) 775-06-82 (бесплатный звонок по России)
                       +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Перевод дробных чисел из одной системы счисления в другую

После того, как я сделал несколько калькуляторов для перевода между разными системами счисления — вот список от первой до последней версии, от самого простого к сложному: Перевод числа в другие системы счисления, Перевод из десятичной системы счисления, Перевод из одной системы счисления в другую — в комментариях стали периодически спрашивать — а что же, мол, дробные числа, как же их переводить? И когда спросили больше трех раз, я таки решил изучить этот вопрос.

Результатом стал калькулятор, который вы видите ниже, он умеет переводить и дробные числа в том числе. Как водится, для любознательных под калькулятором немного теории.

Основание системы счисления исходного числа

Основание системы счисления переведенного числа

Точность вычисления

Знаков после запятой: 8

Переведенное число

 

Детали перевода

 

Исходное число в десятичной системе счисления

 

Переведенное число в десятичной системе счисления

 

Погрешность перевода (в десятичном выражении)

 

Максимальная погрешность перевода (в десятичном выражении)

 

Сохранить share extension

Теперь теория. Я, честно говоря, думал, что вопрос довольно сложный, но при ближайшем рассмотрении все оказалось проще простого. Надо было только держать в голове тот факт, что речь идет о позиционных системах счисления.
В чем тут суть? Рассмотрим на примере десятичного числа 6.125. Это дробное число в десятичной системе счисления представляется так:

Все просто, не так ли? Та же самая простота сохраняется и при записи дробного числа в любой другой системе счисления. Возьмем, например, горячо любимую каждым программистом двоичную систему и число, например, 110.001. Эта запись есть не что иное как

Да-да, число для примера было выбрано не просто так. То есть, 110.001 в двоичной системе есть 6.125 в десятичной. Принцип, я думаю, ясен.

Есть только одно но — все-таки из-за того, что здесь участвую дроби с разными знаменателями, не всегда одно и тоже число можно одинаково точно выразить в разных системах счисления. Что я имею в виду?

Возьмем, например, число . Отлично смотрится в десятичной системе счисления. Но вот если попробовать получить запись этого числа в двоичной системе счисления — будут проблемы. Попробуем, пока не устанем

Продолжать можно еще довольно долго, но уже сейчас видно, что 0.8 в десятичной системе это 0.11001100…(дальше очень много цифр) в двоичной. Если честно, то это периодическое число с перидом 1100, так что мы никогда не сможем выразить его точно в двоичной системе счисления. 110011001100… будет продолжаться до бесконечности.

Поэтому перевод дробного числа из одной системы счисления в другую чаще всего дает погрешность. Погрешность эта зависит от того, сколько разрядов мы используем для записи дробной части переведенного числа. Возьмем пример с числом 0.8 и используем для записи его двоичного представления шесть разрядов после запятой — 0.110011. Полученное число вовсе не 0.8, а 0.796875, разница при этом составляет 0.003125. Это и есть наша погрешность перевода десятичного числа 0.8 в двоичный вид при использовании шести разрядов после запятой.

Вес крайнего правого разряда (самого младшего разряда) называется разрешением (resolution) или точностью (precision), и определяет наименьшее неравное нулю число, которое может быть представлено данным числом разрядов. Для нашего примера это . При этом максимально возможная погрешность представления числа, как нетрудно сообразить, не превышает половины этого веса, или 0.0078125. Так что для 0.8 мы имеем еще и не самую плохую погрешность.

Вот, собственно, и все.

planetcalc.ru

Системы счисления — Перевод чисел из одной системы счисления в другую

Перевод чисел в десятичную систему счисления


Перевод из двоичной системы в десятичную

Преобразуем двоичное число 1001011 из первого примера


Пример Перевести число 11010101 из двоичной системы в десятичную.

Преобразуем число:

110101012= 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20=128+64+0+16+0+4+0+1=21310

Перевод из восьмеричной системы в десятичную

Преобразуем восьмеричное число 572.


Пример Перевести число 572 из восьмеричной системы в десятичную.

Преобразуем число:

5728=5 * 82 + 7 * 81 + 2 * 80=320+56+2=37810

Перевод из шестнадцатеричной системы в десятичную

Числа в шестнадцатеричной системе состоят из цифр 0-9 и букв A, B, C, D, E, F, таблица соответствия:



десятичная123456789101112131415
шестнадцатеричная123456789ABCDEF

Преобразуем шестнадцатеричное число A5C.


Пример Перевести число A5C из шестнадцатеричной системы в десятичную.

Преобразуем число:

A5C16= 10 * 162 + 5 * 161 + 12 * 160 =2560+80+12=265210

calcs.su

Перевод из одной системы счисления в другую

Для перевода чисел из одной системы счисления в другую необходимо владеть основными сведениями о системах счисления и
форме представления чисел в них.

Количество s различных цифр, употребляемых в системе счисления, называется основанием, или базой
системы счисления. В общем случае положительное число X в позиционной системе с основанием s
может быть представлено в виде полинома:

где s — база системы счисления, — цифры,
допустимые в данной системе счисления . Последовательность
образует целую часть X, а последовательность
— дробную часть X.

В вычислительной технике наибольшее применение нашли двоичная (BIN — binary),
и двоично кодированные системы счисления: восьмеричная (OCT — octal), шестнадцатеричная (HEX — hexadecimal) и двоично-кодированная десятичная (BCD — binary coded decimal).

В дальнейшем для обозначения используемой системы счисления число будет заключаться в скобки, а
в индексе указано основание системы. Число X по основанию s будет обозначено
.

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы
.

Основанием системы счисления служит число 2 (s = 2) и для записи чисел используются только
две цифры: 0 и 1. Чтобы представить любой разряд двоичного числа, достаточно иметь физический элемент
с двумя чётко различными устойчивыми состояниями, одно из которых изображает 1, а другое 0.

Прежде чем заняться переводом из любой системы счисления в двоичную, нужно внимательно изучить пример записи числа в двоичной системе счисления:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы
.

Эти системы счисления относятся к двоично-кодированным, в которых основание системы счисления
представляет собой целую степень двойки: —
для восьмеричной и — для шестнадцатеричной.

В восьмеричной системе счисления(s = 8) используются 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7.

Прежде чем заняться переводом из любой системы счисления в восьмеричную, нужно внимательно изучить пример записи числа в восьмеричной системе:

В шестнадцатеричной системе счисления (s = 16) используются 16 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Пример записи числа в шестнадцатеричной системе:

Широкое применение восьмеричной и шестнадцатеричной систем счисления обусловлено двумя факторами.

Во-первых, эти системы позволяют заменить запись двоичного числа более компактным представлением
(запись числа в восьмеричной и шестнадцатеричной системах будет соответственно в 3 и 4 раза короче двоичной записи этого числа).
Во-вторых, взаимное преобразование чисел между двоичной системой с одной стороны и восьмеричной и шестнадцатиречной — с другой
осуществляется сравнительно просто. Действительно, поскольку для восьмеричного числа каждый разряд представляется
группой из трёх двоичных разрядов (триад), а для шестнадцатеричного — группой из четырёх двоичных разрядов (тетрад),
то для преобразования двоичного числа достаточно объединить его цифры в группы по 3 или 4 разряда соответственно, продвигаясь от
разделительной запятой вправо и влево. При этом, в случае необходимости, добавляют нули слева от целой части
и/или справа от дробной части и каждую такую группу — триаду или тетраду — заменяют эвивалентной восьмеричной или
шестнадцатеричной цифрой (см. таблицу).

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы
.

Соответствие между цифрами в различных системах счисления


















DECBINOCTHEXBCD
00000000000
10001110001
20010220010
30011330011
40100440100
50101550101
60110660110
70111770111
810001081000
910011191001
10101012A0001 0000
11101113B0001 0001
12110014C0001 0010
13110115D0001 0011
14111016E0001 0100
15111117F0001 0101

Для обратного перевода каждая OCT или HEX цифра заменяется соответственно триадой или тетрадой
двоичных цифр, причём незначащие нули слева и справа отбрасываются.

Для рассмотренных ранее примеров это выглядит следующим образом:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы
.

В двоично-десятичной системе вес каждого разряда равен степени 10, как в десятичной системе,
а каждая десятичная цифра кодируется четырьмя двоичными цифрами. Для записи десятичного числа в BCD-системе
достаточно заменить каждую десятичную цифру эквивалентной четырёхразрядной двоичной комбинацией:

Любое десятичное число можно представить в двоично-десятичной записи, но следует помнить, что
это не двоичный эквивалент числа. Это видно из следующего примера:

Пусть X — число в системе счисления с основанием s, которое требуется
представить в системе с основанием h. Удобно различать два случая.

В первом случае
и, следовательно, при переходе к основанию h можно использовать арифметику этой системы. Метод преобразования
состоит в представлении числа в виде
многочлена по степеням s, а также в вычислении этого многочлена по правилам арифметики системы счисления
с основанием h. Так, например, удобно переходить от двоичной или восьмеричной системы счисления к десятичной. Описанный
приём иллюстрируют следующие примеры:

.

.

В обоих случаях арифметические действия выполняются по правилам системы счисления с основанием 10.

Во втором случае ()
удобнее пользоваться арифметикой по основанию s. Здесь следует учитывать, что перевод целых чисел
и правильных дробей производится по различным правилам. При переводе смешанных дробей целая и дробная части
переводятся каждая по своим правилам, после чего полученные числа записываются через запятую.

Перевод целых чисел

Правила перевода целых чисел становится ясным из общей формулы записи числа
в произвольной позиционной системе. Пусть число
в исходной системе счисления s имеет вид .
Требуется получить запись числа в системе счисления с основанием h:

.

Для нахождения значений разделим
этот многочлен на h:

.

Как видно, младший разряд
, то есть , равен первому остатку.
Следующий значащий разряд определяется
делением частного на h:

.

Остальные также
вычисляются путём деления частных до тех пор, пока
не станет равным нулю.

Для перевода целого числа из s-ичной системы счисления в h-ичную
необходимо последовательно делить это число и получаемые частные на h (по правилам системы счисления с основанием h)
до тех пор, пока частное не станет равным нулю. Старшей цифрой в записи числа с основанием h служит
последний остаток, а следующие за ней цифры образуют остатки от предшествующих делений, выписываемые в
последовательности, обратной их получению.

Пример 1. Перевести число 75 из десятичной системы счисления
в двоичную, восьмеричную и шестнадцатеричную системы.

Решение:

Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы
.

Перевод правильных дробей

Правильную дробь ,
имеющую в системе с основанием s вид ,
можно выразить в системе счисления с основанием h как многочлен вида

Старшая цифра может быть
найдена умножением этого многочлена на h, т.е.

Если это произведение меньше 1, то цифра равна 0,
если же оно больше или равно 1, то цифра равна
целой части произведения. Следующая цифра справа
определяется путём умножения дробной части указанного выше произведения на h и выделения
его целой части и т.д. Процесс может оказаться бесконечным, т.к. не всегда можно представить дробь
по основанию h конечным набором цифр.

Для перевода правильной дроби из системы счисления
с основанием s в систему счисления с основанием h нужно умножать исходную дробь и дробные части
получающихся произведений на основание h (по правилам «старой» s-системы счисления). Целые части полученных
произведений дают последовательность цифр дроби в h-системе счисления.

Описанная процедура продолжается до тех пор, пока дробная часть очередного произведения
не станет равной нулю либо не будет достигнута требуемая точность изображения числа X в
h-ичной системе счисления. Представлением дробной части числа X в новой системе счисления
будет последовательности целых частей полученных произведений, записанных в порядке их получения и
изображённых h-ичной цифрой. Абсолютная погрешность перевода числа X при p
знаков после запятой равняется .

Пример 2. Перевести правильную дробь 0,453 из десятичной системы счисления
в двоичную, восьмеричную и шестнадцатеричную системы счисления.

* В двоичную систему:

Ответ:

** В восьмеричную систему:

Ответ:

*** В шестнадцатеричную систему:

Ответ: так как , то

Поделиться с друзьями

function-x.ru

Правила перевода чисел из одной системы счисления в другую




⇐ ПредыдущаяСтр 2 из 3Следующая ⇒

Из 16 или 8 в 2

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр) (см. таблицу).
Двоичная (Основание 2) Восьмеричная (Основание 8) Десятичная (Основание 10) Шестнадцатиричная (Основание 16)    
  триады   тетрады    
0 1 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111    

Например:

а) Перевести 305.48 «2» с.с.

б) Перевести 7B2.E16«2» с.с.

16А16=1 0110 10102 3458=11 100 1012

Из 2 в 16 или 8

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

Например:

а) Перевести 1101111001.11012 «8» с.с.

б) Перевести 11111111011.1001112 «16» с.с.

10001010100101012=1000 1010 1001 0101=8A9516= 1 000 101 010 010 101=1052258

Из 16 в 8 и обратно

Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.

Например:

Перевести 175.248 «16» с.с.

Результат: 175.248 = 7D.516.

Из 10 в любую с.с.

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Например:

а) Перевести 18110 «8» с.с.

Результат: 18110 = 2658

б) Перевести 62210 «16» с.с.

Результат: 62210 = 26E16

Перевод правильных дробей
Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.


Например:

Перевести 0.312510 «8» с.с.

Результат: 0.312510 = 0.248

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Например:

Перевести 0.6510 «2» с.с. Точность 6 знаков.

Результат: 0.6510 0.10(1001)2

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

Например:

Перевести 23.12510 «2» с.с.

1) Переведем целую часть: 2) Переведем дробную часть:

 

Таким образом: 2310 = 101112; 0.12510 = 0.0012.
Результат: 23.12510 = 10111.0012.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби — дробями в любой системе счисления.

Из 2, 8 или 16 в 10

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Например:

a)10101101.1012 = 1 27+ 0 26+ 1 25+ 0 24+ 1 23+ 1 22+ 0 21+ 1 20+ 1 2-1+ 0 2-2+ 1 2-3 = 173.62510

б) Перевести 703.048 «10» с.с.

703.048 = 7 82+ 0 81+ 3 80+ 0 8-1+ 4 8-2 = 451.062510

в) Перевести B2E.416 «10» с.с.

B2E.416 = 11 162+ 2 161+ 14 160+ 4 16-1 = 2862.2510

Схема перевода чисел из одной системы счисления в другую

Aрифметические операции в позиционных системах счисления

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение



При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево

 

Таблица двоичного сложения Таблица двоичного вычитания Таблица двоичного умножения
0+0=0 0+1=1 1+0=1 1+1=10 0-0=0 1-0=1 1-1=0 10-1=1 0 0=0 0 1=0 1 0=0 1 1=1

При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.

Например:

Выполнить сложение двоичных чисел:
а) X=1101, Y=101;

Результат 1101+101=10010.

б) X=1101, Y=101, Z=111;

Результат 1101+101+111=11001.

Таблица сложения в 8-ой системе счисления

2+2=4 3+2=5 4+2=6 5+2=7 6+2=10 7+2=11
2+3=5 3+3=6 4+3=7 5+3=10 6+3=11 7+3=12
2+4=6 3+4=7 4+4=10 5+4=11 6+4=12 7+4=13
2+5=7 3+5=10 4+5=11 5+5=12 6+5=13 7+5=14
2+6=10 3+6=11 4+6=12 5+6=13 6+6=14 7+6=15
2+7=11 3+7=12 4+7=13 5+7=14 6+7=15 7+7=16

Таблица сложения в 16-ой системе счисления

+ A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A B C D E F
A A B C D E F
B B C D E F 1A
C C D E F 1A 1B
D D E F 1A 1B 1C
E E F 1A 1B 1C 1D
F F 1A 1B 1C 1D 1E

 

Вычитание



Рекомендуемые страницы:

lektsia.com

alexxlab

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о